C(3)	0.429(1)	0.754 (1)	0.2515 (9)	0.055 (2
C(4)	0.229(1)	0.507 (1)	0.2987 (9)	0.066 (2
C(5)	0.249 (2)	0.353 (1)	0.344 (1)	0.071 (3
C(6)	0.421 (1)	0.287 (1)	0.384 (1)	0.070 (3
C(7)	0.588 (1)	0.362(1)	0.3823 (8)	0.053 (2
C(8)	0.570(1)	0.516(1)	0.3370 (9)	0.049 (2
C(9)	0.399 (1)	0.585(1)	0.2953 (8)	0.050 (2
C(10)	0.693 (1)	0.737 (2)	0.1438(7)	0.041 (2
N(11)	0.704 (2)	0.862(1)	0.0743 (9)	0.059 (3
C(12)	0.735 (2)	0.813(1)	-0.045 (1)	0.055 (3
C(13)	0.757 (2)	0.634 (1)	-0.026(1)	0.046 (2
N(14)	0.719(1)	0.611 (1)	0.087(1)	0.051 (3
C(15)	0.743 (2)	0.886 (2)	0.337 (1)	0.089 (3
C(16)	0.957 (2)	0.893 (1)	0.359(1)	0.091 (3

Table 2. Selected geometric parameters (Å, °)

	-	-	
C(10)—N(14)	1.28 (2)	C(9)C(3)	1.55 (2)
C(13)—N(14)	1.40 (2)	C(5)C(4)	1.40 (2)
H(N14)—N(14)	0.94 (6)	C(6)C(5)	1.34 (2)
C(10)—N(11)	1.34 (2)	C(7)C(6)	1.36 (2)
C(12)—N(11)	1.49 (2)	C(7)C(8)	1.40(1)
H(N11)—N(11)	0.94 (4)	C(2)C(3)	1.55(1)
C(8)—O(1)	1.36 (2)	C(15)C(2)	1.51 (3)
C(2)-O(1)	1.51 (2)	C(10)C(2)	1.45(1)
C(4)C(5)	1.40 (2)	C(16)—C(15)	1.51 (3)
C(8)—C(9)	1.35(1)	C(13)—C(12)	1.53 (2)
Br. · · H(N14)	2.54 (5)	Br···H(N11 ¹)	2.25 (4)
$O(1) \cdot \cdot \cdot H(N14)$	2.24 (7)		
C(10)—N(14)—C(13)	116(1)	O(1)—C(8)—C(7)	122 (1)
C(10)—N(14)—H(N14)	110 (4)	C(9)C(8)C(7)	122 (1)
C(13)—N(14)—H(N14)	133 (4)	C(9)C(3)C(2)	100 (1)
C(10)—N(11)—C(12)	111 (1)	O(1)C(2)C(3)	108 (1)
C(10)—N(11)—H(N11)	134 (5)	O(1)C(2)C(15)	107 (1)
C(12)—N(11)—H(N11)	115 (5)	O(1) - C(2) - C(10)	105 (1)
C(2)-O(1)-C(8)	106 (1)	C(3)-C(2)-C(15)	110(1)
C(4)—C(9)—C(8)	121 (1)	C(3)C(2)C(10)	112(1)
C(4)—C(9)—C(3)	129(1)	C(15) - C(2) - C(10)	115 (1)
C(8)—C(9)—C(3)	109 (1)	C(2)C(15)C(16)	116 (2)
C(9)—C(4)—C(5)	116(1)	N(14)—C(10)—N(11)	109 (1)
C(4)-C(5)-C(6)	122 (1)	N(14) - C(10) - C(2)	128 (2)
C(5)—C(6)—C(7)	123 (1)	N(11) - C(10) - C(2)	123 (2)
C(6)C(7)C(8)	116(1)	N(11) - C(12) - C(13)	100 (1)
O(1)—C(8)—C(9)	116(1)	N(14)—C(13)—C(12)	103 (1)
$Br \cdot \cdot \cdot H(N14) - O(1)$	116 (3)	$Br \cdot \cdot H(N14) - N(14)$	133 (5)
$O(1) \cdot \cdot \cdot H(N14) - N(14)$	110 (5)	$Br \cdots H(N11^{i}) - N(11^{i})$	170 (7)

Symmetry code: (i) x, y - 1, z.

Enraf-Nonius (1989) CAD-4 Software was used for data collection and reduction. The structure was solved by direct methods using SHELXS86 (Sheldrick, 1985) and refinement was carried out using SHELX76 (Sheldrick, 1976) with anisotropic displacement parameters for Br, ethyl C, and N atoms. H atoms were included as fixed atoms in idealized positions with C_{sp^2} —H = 0.97 and C_{sp^3} —H = 0.98 Å. An attempt to freely refine H atoms attached to N atoms was not satisfactory; these H atoms could be fairly well positioned by constraining the N—H bond length to 0.94 Å, a value which has been found in histamine (Bonnet & Ibers, 1973) and in protonated histamine (Veidis, Palenik, Schaffin & Trotter, 1969). The ellipsoid plot was drawn using ORTEPII (Johnson, 1976); the packing diagram was obtained using ATOMS (Dowty, 1993). All computations were carried out on a Pentium 90 computer.

The authors thank Mr Serge Brunel for technical assistance.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: PA1181). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Bonnet, J. J. & Ibers, J. A. (1973). J. Am. Chem. Soc. **95**, 4829–4833. Cromer, D. T. & Mann, J. B. (1968). Acta Cryst. A**24**, 321–324.
- Dowty, E. (1993). ATOMS. A Computer Program for Displaying Atomic Structures. 521 Hidden Valley Road, Kingsport, TN 37663, USA.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Veidis, M. V., Palenik, G. J., Schaffrin, R. & Trotter, J. (1969). J. Chem. Soc. A, pp. 2659–2666.

Acta Cryst. (1995). C51, 2441-2443

1,2,3,4,6,7-Hexahydro-10-chloronaphtho-[3,2-*c*]acridine

JAYANTA KUMAR RAY AND MANASH HALDAR

Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302, India

GUR DAYAL NIGAM

Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur 721 302, India

KANDASAMY SIVAKUMAR[†] AND HOONG-KUN FUN*

X-ray Crystallography Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

(Received 29 November 1994; accepted 10 May 1995)

Abstract

The title molecule, $C_{21}H_{18}CIN$, shows conformational flexibility; each of the two unsaturated rings present in the structure adopts two conformations, a major

[†] On leave from: Department of Physics, Anna University, Madras 600 025, India.

component and a minor component. The molecule as a whole is almost planar. The crystal structure is stabilized by van der Waals interactions.

Comment

Monoaza polycyclic azaarenes are very important molecules for molecular recognition because of their unique structural features that help to hold the planar hosts in the cavity by weak van der Waals forces or hydrogen bonds. These molecules are also important for studying the role of the presence of 'bay regions' in a molecule towards carcinogenic activity (Kumar, 1985). We have synthesized one novel chloronaphthoacridine moiety, (I), belonging to this category. Since the geometry of the unsaturated 'cyclohexene' rings can be used to predict the site of action, the crystal structure was determined to evaluate the conformational features of the molecule.

The molecule as a whole is almost planar, with a tilt of 10.95 (3)° between the segments connected by the cyclohexene ring C comprising atoms C5, C6, C7, C8, C17 and C18. Both the cyclohexene rings present in the structure undergo conformational changes, as evidenced by the disorder present in the structure. In ring C, both the major and minor conformers are in half-chair conformations, but in opposite orientations. In the case of ring E (C10–C15), the major conformation is between sofa and half-chair [the asymmetry parameters (Nardelli,

Fig. 1. Structure of the title compound showing 50% probability displacement ellipsoids with the numbering scheme. For clarity, the minor-conformer positions are not shown.

Experimental

The compound was synthesized by the condensation of the chloroaldehvde, obtained from 1-keto-1,2,3,4,5,6,7,8-octahydroanthracene, with 4-chloroaniline, followed by regioselective thermal cyclization of the resulting aniline (Ramesh, Kar, Chatterjee & Ray, 1988). The single crystals were obtained by slow cooling from a chloroform and petroleum ether solvent system (333-353 K).

Crystal data

 $wR(F^2) = 0.1278$

3675 reflections

334 parameters

refined

CII

CI

C2

All H-atom parameters

 $w = 1/[\sigma^2(F_o^2) + (0.0882P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

S = 1.113

$C_{21}H_{18}CIN$
$M_r = 319.81$
Monoclinic
$P2_1/c$
a = 12.119(1) Å
b = 12.984(1) Å
c = 10.335(1) Å
$\beta = 90.67 (1)^{\circ}$
$V = 1626.1 (2) \text{ Å}^3$
Z = 4
$D_x = 1.306 \text{ Mg m}^{-3}$
-

Mo $K\alpha$ radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 8 - 25^{\circ}$ $\mu = 0.234 \text{ mm}^{-1}$ T = 293 (2) KTransparent block $0.56 \times 0.48 \times 0.40$ mm Colourless

Data collection	
Siemens P4 four-circle	$R_{\rm int} = 0.0183$
diffractometer	$\theta_{\rm max} = 27.49^{\circ}$
θ -2 θ scans	$h = -15 \rightarrow 15$
Absorption correction:	$k = -16 \rightarrow 1$
none	$l = -1 \rightarrow 12$
4628 measured reflections	3 standard reflections
3675 independent reflections	monitored every 100
2462 observed reflections	reflections
$[I > 2\sigma(I)]$	intensity decay: <2%
Refinement	
Refinement on F^2	$(\Delta/\sigma)_{\rm max} = -0.001$
$R[F^2 > 2\sigma(F^2)] = 0.0454$	$\Delta a_{max} = 0.163 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.214 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: none Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

x	у	Z	U_{ea}
-0.02003 (4)	0.68458 (5)	0.68867 (6)	0.1009 (3)
0.09996 (14)	0.66175 (14)	0.6012 (2)	0.0656 (5)
0.19874 (15)	0.69122 (13)	0.6502 (2)	0.0617 (4)

C8---C17---C18---C5

C15-C10-C11-C12

C3	0.29594 (12)	0.67048 (11)	0.58012 (15)	0.0498 (3)
C4	0.40263 (14)	0.69693 (12)	0.6254 (2)	0.0552 (4)
C5	0.49339 (12)	0.67207 (11)	0.55540 (14)	0.0490 (3)
C6†	0.6107 (2)	0.6855 (2)	0.6059 (2)	0.0557 (7)
C6' †	0.5975 (6)	0.7370 (9)	0.564 (2)	0.086 (8)
C7 †	0.6852 (3)	0.7177 (2)	0.4968 (3)	0.0589 (8)
C7'†	0.6940 (14)	0.6696 (17)	0.5276 (8)	0.072 (7)
C8	0.67700 (12)	0.64083 (12)	0.38620 (14)	0.0506 (4)
C9	0.76635 (12)	0.61859 (13)	0.3085 (2)	0.0565 (4)
C10	0.75800 (12)	0.55594 (12)	0.2000 (2)	0.0529 (4)
C11	0.85832 (15)	0.5370 (2)	0.1170 (2)	0.0703 (5)
C12 †	0.8423 (3)	0.4524 (3)	0.0154 (3)	0.0780 (13)
C12′ †	0.8329 (10)	0.5194 (16)	-0.0267 (4)	0.089 (5)
C13†	0.7288 (3)	0.4583 (4)	-0.0466 (5)	0.0697 (13)
C13′ †	0.756 (2)	0.4277 (12)	-0.0214 (41)	0.114 (12)
C14 †	0.6419 (3)	0.4371 (3)	0.0560 (3)	0.0578 (11)
C14′†	0.6476 (18)	0.4699 (16)	0.0306 (9)	0.069 (6)
C15	0.65560 (12)	0.51308 (12)	0.16795 (15)	0.0507 (4)
C16	0.56543 (12)	0.53566 (12)	0.24476 (14)	0.0481 (3)
C17	0.57431 (11)	0.59818 (10)	0.35363 (13)	0.0415 (3)
C18	0.47665 (11)	0.62270 (10)	0.43320 (13)	0.0417 (3)
N19	0.37841 (10)	0.59756 (10)	0.38691 (11)	0.0483 (3)
C20	0.28819 (12)	0.61943 (12)	0.46024 (15)	0.0493 (3)
C21	0.18240 (13)	0.5913 (2)	0.4122 (2)	0.0656 (5)
C22	0.09013 (15)	0.6119 (2)	0.4817 (2)	0.0710 (5)

† Partial occupancy (see below).

Table 2. Selected geometric parameters (Å, °)

	0	•	
Cl1Cl	1.747 (2)	C10-C15	1.396 (2)
C1C2	1.350 (3)	C10-C11	1.516 (2)
C1C22	1.398 (3)	C11C12'	1.530 (4)
C2—C3	1.416 (2)	C11-C12	1.531 (4)
C3-C20	1.407 (2)	C12-C13	1.512 (4)
C3-C4	1 412 (2)	$C_{12}' - C_{13}'$	1 512 (5)
C4	1 362 (2)		1 528 (5)
C5C18	1.302 (2)	$C_{13}' = C_{14}'$	1.528 (5)
C5_C6	1.429(2)	C13 - C14	1.528 (3)
	1.519 (2)		1.526 (3)
C3C6	1.519 (3)		1.528 (3)
C6-C7	1.511 (3)	CI5CI6	1.389 (2)
C6 ⁻ -C7	1.511 (3)	C16C17	1.391 (2)
C7—C8	1.520 (3)	C17—C18	1.484 (2)
C7'C8	1.520 (3)	C18—N19	1.319 (2)
C8—C9	1.386 (2)	N19—C20	1.367 (2)
C8C17	1.400 (2)	C20-C21	1.417 (2)
C9-C10	1.388 (2)	C21—C22	1.362 (2)
C2C1C22	121.9 (2)	C10-C11-C12'	114.8 (5)
C2C1C11	119.8 (2)	C10-C11-C12	114.1 (2)
C22C1Cl1	118.22 (15)	C13-C12-C11	111.2 (3)
C1 - C2 - C3	119.5 (2)	$C_{13}' - C_{12}' - C_{11}$	102 (2)
C20-C3-C4	117.22 (13)	C12C13C14	109 1 (4)
C_{20} C_{3} C_{7}	119.52 (15)	$C_{12}' - C_{13}' - C_{14}'$	105 3 (15)
C4-C3-C2	123 2 (2)	CI3_CI4_CI5	109.9 (3)
$C_{1}^{}C_{2}^{}C_{3$	120.57(14)	$C_{13}^{-13} - C_{14}^{-14} - C_{15}^{-15}$	109.9(3)
C4-C5-C18	117.93 (14)		118.89 (14)
C4C5C6	123 3 (2)	C16-C15-C14	1193 (2)
C18C5C6	118 53 (15)	C10-C15-C14	1217(2)
C10C5C0	120.0 (5)	C16 - C15 - C14'	121.7 (2)
C_{4}^{+}	120.9(3)	C10-C15-C14	124.3(0)
	114.1 (7)		114.4 (9)
	109.9 (2)		122.11 (14)
1/-16-15	108.0 (11)		119.06 (13)
C6-C/-C8	110.2 (2)	C16-C1/-C18	121.27 (12)
C6'-C/'-C8	106.5 (9)	C8—C17—C18	119.64 (12)
C9—C8—C17	118.48 (14)	N19-C18-C5	123.36 (13)
C9C8C7	121.9 (2)	N19—C18—C17	117.93 (12)
C17C8C7	119.4 (2)	C5-C18C17	118.71 (12)
C9C8C7'	120.7 (6)	C18-N19-C20	118.15 (12)
C17—C8—C7'	116.0 (8)	N19-C20-C3	122.69 (13)
C8-C9-C10	122.69 (14)	N19-C20-C21	118.58 (14)
C9-C10-C15	118.77 (14)	C3-C20-C21	118.72 (14)
C9C10C11	120.05 (15)	C22-C21-C20	120.6 (2)
C15-C10-C11	121.16 (15)	C21-C22-C1	119.6 (2)
C18-C5-C6-C7	41.6 (3)	C15-C10-C11-C12'	29.7 (9)
C18-C5-C6'-C7'	-54.7 (16)	C10-C11-C12-C13	40.4 (4)
C5C6C7C8	-55.3 (4)	C10-C11-C12'-C13'	-57.8 (17)
	55.5 (.)	0.0 0.1 0.2 015	5.10 (17)

C5C6'C7'C8	65 (2)	C11 - C12 - C13 - C14 - 64.3 (6)
C6C7C8C17	39.0 (3)	C11-C12'-C13'-C14' 73 (3)
C6'C7'C8C17	-52.6 (18)	C12-C13-C14-C15 56.6 (6)
C7C8C17C18	-4.4 (2)	C12'-C13'-C14'-C15 -63 (3)
C7'C8C17C18	25.9 (8)	C11C10C15C14 5.9 (3)
C6C18C17	-7.4 (2)	C_{11} - C_{10} - C_{15} - C_{14}' - 14.0 (9)
C6'C5C18C17	27.0 (7)	C_{13} - C_{14} - C_{15} - C_{10} -28.5 (5)

C13'-C14'-C15-C10 31.1 (19)

The structure was solved by direct methods and refined by full-matrix least-squares techniques. All H atoms were located from difference Fourier maps, but their positional parameters could not be refined because of non-convergence. The Rvalue at this stage was 0.059 (wR = 0.198) and a difference Fourier map showed peaks of $0.5 \text{ e} \text{ Å}^{-3}$ near C6, C7, C12, C13 and C14. They were first interpreted as the disordered Hatom positions, but refinement based on this did not proceed well. They were then considered as the disordered positions of C atoms, due to conformational flexibility of the cyclohexene rings. Refinement with this model resulted in good convergence with a final R value of 0.046 (wR = 0.128). This positional disorder was considered for the atoms in each ring, *i.e.* C6 (C6') and C7 (C7') [86% (14%)] and C12 (C12'), C13 (C13') and C14 (C14') [81% (19%)]. The final difference Fourier map was featureless, with a maximum peak of $0.16 \text{ e} \text{ Å}^{-3}$. The H atoms were considered only for the major positions and not for the minor positions, and all of them were refined isotropically.

-12.4(2)

-11.4(3)

Data collection: XSCANS (Siemens, 1991). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC (Sheldrick, 1990). Software used to prepare material for publication: SHELXL93. Geometric calculations: PARST (Nardelli, 1983b).

The authors would like to thank the Malaysian Government and the Universiti Sains Malaysia for research grant R&D No. 123-3417-2201. One of the authors (KS) thanks the Universiti Sains Malaysia for a Visiting Postdoctoral Research Fellowship.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, least-squares-planes data and complete geometry have been deposited with the IUCr (Reference: KH1029). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Kumar, S. (1985). J. Org. Chem. 50, 3070-3073. 2)
 - Nardelli, M. (1983a). Acta Cryst. C39, 1141-1142.
- Nardelli, M. (1983b). Comput. Chem. 7, 95-98. 3)
 - Ramesh, D., Kar, G. K., Chatterjee, B. G. & Ray, J. K. (1988). J. Org. Chem. 53, 212-214.
 - Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
 - Sheldrick, G. M. (1990). SHELXTL/PC User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
 - Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
 - Siemens (1991). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.